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a b s t r a c t

Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation
simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic
potentials at large strains. We carry out indentation simulations for bcc tantalum using three different
interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the
plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of
sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault
energy surfaces explain the significant differences found in the defect structures generated for the three
potentials investigated in this study. The simulations enable the quantification of total dislocation length and
twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in
(defect emission) event shows a strain rate sensitivity m in the range of 0.037–0.055. The effect of indenter
diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the
profile of the residual indentation and geometrically necessary dislocation theory.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nanoindentation is an experimental technique of ever increasing
importance, both in research and technology. It is not only used to
gather information about the elastic modulus and hardness of a
material [1,2] but also provides insights into cracking mechanisms
[3], fracture toughness [4], strain-hardening [5], phase transformations
[6], creep [7], and the mechanical response of superhard thin films [8].
The technique is particularly useful but not limited to thin films and
surface layers. The combination of the modern experimental testing
method with the Oliver–Pharr [9] analysis has led to a widespread
utilization of nanoindentation testing.

Since the seminal contribution by Kelchner et al. [10], molecular
dynamics (MD) simulations have been extensively applied to study
plasticity mechanisms during indentation processes, mainly on fcc
(face centered cubic) metals [11–22]. Contributions to the study in bcc
(body centered cubic) metals are, however, rare [23–25], primarily
because of the scarcity, up to recently, of robust potentials. Hagelaar
et al. [25] investigated the nanoindentation of tungsten using a
Finnis-Sinclair (FS) potential, focusing on small penetration depths.
Naveen et al. [23] studied dislocation activation from different slip
systems in Fe and Fe–Cr, using a composition-dependent embedded
atom model (CDEAM) potential by Caro et al. [26]. Alcalá et al. [24]
recently studied Ta using the Embedded Atom Method (EAM)
potential by Li et al. [27], reporting nucleation of planar defects,
including stacking faults and twins. Empirical potential develop-
ment is complex [28], and part of the reason for the relative scarcity
of nanoindentation simulation results on bcc metals is the lack of
potentials which are both computationally efficient and reliable at
high strains [29]. Nanoindentation simulations in particular might
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often reach and exceed the application limits for which a given
potential was intended and tested.

The plastic stages after the pop-in event during nanoindenta-
tion are still a fertile area for both simulation and experimental
studies [18] and the general purposes of this work are (a) to study
the initiation and evolution of defects at the onset of plasticity in a
bcc metal using nanoindentation as the deformation tool, and
(b) to compare several different empirical potentials. The material
selected for this study is bcc tantalum. Extensively studied
experimentally, its high melting point and bcc phase stability up
to pressures well above 100 GPa, make it a model material for
studying bcc plasticity [30–32].

We first present the elastic constants as a function of pressure
calculated by each potential, followed by the typical surface
energies. Then we focus on the onset of plasticity and analyze its
evolution by quantifying dislocation density and twinning and
identifying the dislocation evolution mechanisms, we discuss tip
diameter and indenter velocity effects on the elastic portion and
onset of plasticity, and present the residual micro-structures for
each potential. Finally, we present a new intrinsic length-scale
model based on the profile of the residual indentation, using the
concept of geometrically necessary dislocations.

2. Methods

2.1. Simulation

Molecular dynamics simulations were carried out with LAMMPS
[33], including defect nucleation and load–penetration curves to
study the influence of the interatomic potential on the results and
to address potential-dependent behaviour [28]. Three interatomic
potentials were used and the predictions compared: the Embedded
Atom Method (EAM) potential by Li et al. [27], the Extended Finnis-
Sinclair (EFS) potential by Dai et al. [34], and the recent EAM
potential by Ravelo et al. [30,31]. These will be referred, for the sake
of simplicity, as Li-EAM, Dai-EFS, and Ravelo-EAM potentials.

We used a rigid hemispherical indenter interacting with the
atoms in the target with a harmonic potential, Vi¼ KðR�riÞ2, with
R the indenter radius and ri the position of atom i, and with
K¼1000 eV/nm2 being the specified force constant. Even though
the pyramidal Berkovich indenter is the most common indenter
used in nanoindentation because it maintains self similarity, such
an indenter has a rounded tip with a radius of up to 150 nm. Cube
corner nanoindentation tips can have a radius as small as 40 nm.
Therefore, it can be expected that the spherical tip used in our
studies renders the same plasticity mechanisms produced by a
Berkovich tip or a cube corner tip prior to significant effects
produced by the pyramidal planes. A Langevin bath at 300 K was
applied to the sides and bottom of the simulation domain in order
to minimize possible boundary effects. For each configuration, the
entire sample was energetically minimized and equilibrated at
300 K prior to nanoindentation. We restricted our simulations to
the three principal surface orientations: (100), (110) and (111)
single crystals.

The simulations were carried out with indenter tip diameters
(D) of 8, 12, 16 and 20 nm, the latter for the (100) oriented surface
only. The simulation box was varied according to indenter size:
24�24�12 nm3 (�0.4 million atoms), 36�36�18 nm3 (�1.3
million atoms), 48�48�24 nm3 (�3 million atoms), and
60�60�30 nm3 (�6 million atoms), respectively. In each case,
the box size was much larger than the expected extent of the
plasticity zone, which is estimated to be up to 3.5 times the radius
of the indentation imprint, as a worst-case scenario [35,36]. Our
box sides were chosen to be around 6 times the radius of the
imprint in the Z direction and 8 times the radius of the imprint in

the X and Y directions. In addition we have ensured that using a
much larger box (20 million atoms) for the 20 nm indenter did not
change the resulting micro-structure.

MD simulations were conducted in a displacement-controlled
fashion by applying a constant penetration rate to the indenter
[10,24]. For our simulations, a constant penetration rate of 34 m/s
was chosen, and we established the effect of the imposed strain
rate by comparing results from 34 and 3.4 m/s loading velocity. We
note that these indentation speeds correspond to �1/100 C0 and
�1/1000 C0 respectively, where C0 is the directionally averaged
sound velocity for Ta.

In every case, after achieving a penetration of 30% of the
indenter diameter, the indenter was held in position for a time
equal to one-tenth of the loading time, and then removed at the
same displacement rate until no load was measured. Hold periods
are a common practice in experimental nanoindentation, for
example, in thermal drift and creep measurements [1], and we
intended to observe some level of plastic relaxation during the
hold, which indeed occurred.

Defective structures were filtered by Common Neighbor Analysis
(CNA) [37] and by means of the recently developed Dislocation
Extraction Algorithm [38–40], and visualized using OVITO [41].

3. Evaluation of interatomic potentials

3.1. Purpose of the evaluation

There is no source in the literature of interatomic potentials
specifically fitted for nanoindentation studies. When studying bcc
metals, potentials of the Embedded Atom Method style [42] and of
the Extended Finnis-Sinclair style [34] are used extensively, among
others, due to a relatively good balance between accuracy and
computational cost. Even when choosing a widely used potential,
the elected one should confirm not only its stability and surface
energies but also the absence of unphysical behavior such as non-
valid slip systems or solid–solid phase transitions not predicted by
a phase diagram [28]. The Li-EAM potential was recently used in
nanoindentation simulations [24] and high strain-rate simulations
of deformation and fracture in nano-crystalline tantalum thin
films [43] but is not fitted to high strains/high pressure. The Dai-
EFS and, in particular, the Ravelo-EAM potentials were both fit to
high pressure properties. Both of them have been extensively used
in high-pressure/high strain-rate simulations [30,31]. Thus, a
comparison of the three potentials is warranted. The following
sections are devoted to the evaluation of the three potentials
chosen in the present study.

3.2. Elastic properties

The elastic behavior of structures with cubic symmetry is
described completely by their elastic constants, C11, C12, and C44.
The elastic constants obtained using the three potentials were
calculated. Elasticity equations were used to convert them into the
standard.

The orientation-dependent elastic modulus for (100), (110), and
(111) single crystals were calculated by means of the following
equations [44]:

1
E100

¼ C11þC12

ðC11þ2C12ÞðC11�C12Þ
: ð1Þ

1
E110

¼ 4C44ðC11þC12Þ�2C44ðC11þ2C12ÞþðC11þ2C12ÞðC11�C12Þ
4C44ðC11þ2C12ÞðC11�C12Þ

:

ð2Þ
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1
E111

¼ 6C44ðC11þC12Þ�4C44ðC11þ2C12ÞþðC11þ2C12ÞðC11�C12Þ
6C44ðC11þ2C12ÞðC11�C12Þ

:

ð3Þ

B is the bulk modulus, defined as

B¼ C11þ2C12

3
: ð4Þ

The shear modulus G was defined as the arithmetic mean over
the Voigt-averaged and Reuss-averaged shear moduli

G¼ 1
2
ðGVoigtþGReussÞ: ð5Þ

According to Ziegenhain et al. [17], GReuss [45] is defined as

GReuss ¼
5ðC11�C12ÞC44

4C44þ3ðC11�C12Þ
: ð6Þ

GVoigt, the Voigt-averaged shear modulus [46], is defined as

GVoigt ¼
C11�C12þ3C44

5
: ð7Þ

ν is the Poisson ratio, defined as

ν¼ 3B�2G
2ðGþ3BÞ: ð8Þ

The Elastic modulus, E, is

E¼ 2Gðνþ1Þ ð9Þ
The elastic anisotropy can be described by the Zener anisotropy

factor, X, as

X ¼ 2C44

C11�C12
: ð10Þ

Predictions from Eqs. (1)–(10) are summarized in Table 1.
Potentials reproduce reasonably well the elastic properties at zero
pressure.

Nanoindentation typically leads to large stresses up to tens of
GPa and it is important to establish whether the pressure depen-
dence of the elastic constants is adequate; this is shown in Fig. 1.
The Dai-EFS and Ravelo-EAM potentials behave well under pres-
sure and in the range considered here, while it can be seen that
the Li-EAM potential performs poorly at pressures which can be

Table 1
Elastic properties of Ta at zero pressure by the potentials of Li et al. [27], Dai et al. [34] and Ravelo et al. [31], together with experimental values by Stewart et al. [47]. Elastic
constants Cij, bulk modulus B, average shear modulus G, average Poisson ratio ν, elastic anisotropy X, average elastic modulus E, and elastic modulus for the three
crystallographic orientations studied.

C11 (GPa) C12 (GPa) C44 (GPa) G (GPa) ν (GPa) X E E100 (GPa) E110 (GPa) E111 (GPa)

Li-EAM 263 159.1 86.5 68.1 0.343 1.66 183 140 197 400
Dai-EFS 230.8 143.5 91.3 67.9 0.325 2.09 180 120 189 405
Rav-EAM 262.6 160.7 81.8 67.2 0.345 1.6 181 140 190 385
Exp. 264 160 82 – – – – – –
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Fig. 1. Pressure dependence of the elastic constants Cij for the potentials studied: (a) Li-EAM, (b) Dai-EFS, and (c) Ravelo EAM.
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reached during nanoindentation. As shown in Fig. 1, the elastic
constants for the Li potential also display discontinuities under
compression. This is possibly due to the spline fitting used for this
potential, which was not tested at large strains. The discontinuities
in the derivative of the elastic constants can lead to artificial
effects during loading, such as artificial micro-structures and
phase transitions [32] as well as soft phonon modes [48].

3.3. Generalized stacking fault energies

In fcc metals plasticity often occurs by emission of partial loops,
i.e. partial dislocations bounding a stacking fault. In bcc metals, in
contrast, the generalized stacking fault energy, also known as the γ
energy surface, does not exhibit local minima for the relevant
〈111〉 shear directions [49], and stacking fault formation is not
expected. However, Tang et al. [50] and Alcalá et al. [24] describe
stacking faults for the Dai-EFS and Li-EAM potentials, respectively.
Therefore, generalized stacking fault energy (GSFE) surface calcu-
lations for Ta along the 〈111〉 slip directions were performed for
the three potentials used in this study, and are shown in Fig. 2.

The Dai-EFS potential gives the lowest stacking fault energy,
and displays asymmetry for the f112g plane, as in recent Density
Functional Theory (DFT) calculations [51]. Curves using the Ravelo-
EAM potential are symmetric for both planes, as in other DFT
calculations [52]. The curves for Li-EAM are not smooth, probably
due to the splines chosen for potential fitting which also caused
the discontinuities in the elastic constants.

The presence of stacking faults can dramatically alter the
evolution of deformation, as is well known experimentally and
has been shown computationally. For instance, the defect config-
uration generated around an expanding void is quite different in
copper [53] than in tantalum [50] (no stacking fault formation).

In all potentials used here the f110g plane along 〈111〉 shear
direction always has the lowest energy and, therefore, unstable
stacking faults (SFs), if exist, might preferentially form on these
planes. These SFs would be purely ‘elastic’, and correspond to the
incipient stage of ‘plastic’ defects that will form later on. Tang et al.
[50] observed that the nucleation of dislocations in ½110� can occur
by formation of two SFs, when studying the defect nucleation and
evolution under uniaxial high strain rate compression of a nano-
void in a Ta single crystal. Small segments of f110g SFs were seen
using the Dai-EFS potential. The fault vector is actually 1=6〈110〉
and could be considered as a combination of two vectors
1=12〈111〉þ1=12〈111〉. The SFs observed by Alcalá et al. [24] with
the Li-EAM potential, with a reported fault vector of 1=2〈110〉,
could be the same as the ones observed by Tang et al. [50] when
using the Dai-EFS potential. The reported value of 1=2〈110〉 seems
unlikely, since its magnitude is too large, close to the Burgers
vector of a full dislocation 1=2〈111〉. The fault vector of a f112g
twin is only 1=6〈111〉. So the 1=6〈110〉 value reported by Tang [50]
is a more reasonable value. Nevertheless, these SFs are unstable
and they either transform to other stable defects or recover
completely during unloading, while full dislocations and twins
can survive. Pressure might modify the GSFE surface [54], and
further studies are needed to quantify possible pressure-induced
changes.

The role of generalized twinning fault energy (GTFE) surface in
plasticity of bcc nanowires was discussed by Cao [55]. In this work,
the following definitions were used: the twinning fault (TF) is the
energy measured at a displacement b=3, unstable and stable
twinning fault (UTF and STF, respectively) energies are the energy
maximum and minimum along the GTFE curve, the twin migration
(TM) energy is the difference between UTF and TF energies,
ðUTF�TFÞ, and the twin propensity is given by the ratio
UTF=USF . Since the UTF exists only in fcc, the STF is used in bcc
metals instead. A twin propensity ratio below 1 usually indicates

that twinning is dominant over subsequent slip. We show the
GTFE curve for the three potentials studied here, calculated as in
[55] at zero pressure in Fig. 3. For all potentials, STF=USFo1,
STF=TFo1, TMo0, and jTM=USFj51. Therefore, twinning should
be preferred over slip and twins would grow thanks to a low
migration barrier. Li-EAM has the largest STF-TF difference, sug-
gesting the largest driving force for twinning. However, as for the
GSFE surface, finite pressure might significantly change the GTFE
surface.

Fig. 2. Comparison of stacking fault energies for Ta using the three potentials:
(a) Li-EAM, (b) Dai-EFS, and (c) Ravelo EAM. The f110g plane always has the lowest
energy. The Dai-EFS potential captures the twinning-antitwinning asymmetry for
f112g plane found by DFT calculations [51].
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As a direct consequence of the behavior of the Li-EAM potential
shown in Figs. 1a, 2 and 3a, it was tested on (100) single crystals
only, to demonstrate unexpected response as presented in the
next sections.

4. Nanoindentation simulation results

4.1. Classical treatment of nanoindentation loading

In his seminal contribution, Hertz studied the elastic interac-
tion between a sphere of radius R and an elastic isotropic solid
[56]. He determined that the force F imparted by the sphere
perpendicular to the surface is related to the displacement h into
the surface through the following relationship:

F ¼ 4
3
EnR1=2h3=2: ð11Þ

En is often called the “reduced indentation modulus” or
“combined indentation modulus” of the system, and is given by

1
En

¼ 1�ν2

E
þ1�ν02

E0
; ð12Þ

where E, ν, E0 and ν0 are the elastic modulus and Poisson's ratio of
the surface and indenter, respectively. The indenter used in our
simulations [10] is assumed to be rigid and, hence, the second
term in Eq. (12) is dropped. Also, our indenter is frictionless,
analogous to a Hertzian indenter and, therefore, there are no
forces in the direction tangential to the tip. Within the Hertzian

model, the contact pressure amounts to

p¼ 3
4π

1
En

ffiffiffi
h
R

r
: ð13Þ

The Hertz treatment is considered exact for h5R and an
elastically isotropic solid. It has been shown [57,58,17] that when
treating single crystals, as in our study, the Hertzian laws hold
with a modified indentation modulus that depends on the surface
orientation. Hence for our single crystals,

1
En

¼ 1�ðνijkÞ2
Eijk

: ð14Þ

The above equations will be used to calculate Hertzian loading
curves and compare them to the MD loading curves.

4.2. The onset of plasticity

For our simulations, the relevant geometrical parameters can
be schematically seen in Fig. 4a, together with an arrangement of
geometrically necessary dislocations [59] under the indentation
(Fig. 4c and d). A typical force–displacement curve for a nanoin-
dentation test can be seen in Fig. 4b. A spherical indenter is
pressed into the sample at constant penetration rate and the
equivalent reaction force F is computed based on the interactions
tracked by the MD code. We are able to measure the contact radius
ap and the penetration depth, both relative to the surface (h) and
relative to the contact circle (hp), see Fig. 4a. The hardness, H, is
given by

H¼ Fmax

A
; ð15Þ
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Fig. 3. Generalized twinning fault energy curve for the three potentials compared with generalized stacking fault energy for f112g 〈111〉. (a) Li-EAM, (b) Dai-EFS and
(c) Ravelo-EAM.
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where Fmax is the load and A is usually taken as the projected area
of the residual impression. In nanoindentation testing, the size of
the residual impression can be very complex and of questionable
accuracy [17], so the residual depth, hres, is measured instead, and
the contact area is assumed to be [1]:

A� 2πRhres: ð16Þ
In some load-controlled nanoindentation experiments, the

irreversible onset of plastic deformation can be seen in the
force–displacement curve as an excursion in depth at constant
load. This event is often referred to as a “pop-in” [63] and, for
defect-free crystals, is linked particularly to dislocation nucleation
at or just below the surface [64–66]. In our simulations, the
indentation is performed at constant penetration rate, and pop-
in events can appear either as a load drop for a low penetration
rate or as an excursion in depth for sufficiently high penetration
rates [24].

Load–penetration curves for the three potentials using a
spherical tip diameter of 20 nm are presented in Fig. 5. The Hertz
equation describes the elastic loading curve very well up to the
onset of plasticity. Hardness measurements for our simulations,
using Eqs. (15) and (16), are presented in Table 2. Typically,
hardness decreases with indenter diameter, and reaches a value
around 14–18 GPa, which is higher than experimental values
[65,67], consistent with typical high values for MD simulations
of perfect crystals.

Continuing with a classical treatment, the contact radius ap was
established at the onset of plasticity, and the mean contact
pressure was calculated through

pmean ¼
F
πa2p

: ð17Þ

The maximum resolved shear stress is related to the mean
contact pressure and reaches a maximum of τmax � 0:465pmean

slightly below the contact surface [64]. Our calculations for the
20 nm tip diameter give τmax � 13:2 GPa for Li-EAM,
τmax � 14:4 GPa for Dai-EFS, and τmax � 9:7 GPa for Ravelo-EAM.
These values are derived only based on the corresponding elastic
constants, and the two former values are above the theoretical

threshold for homogeneous nucleation (τth ¼ G=2π), while the
latter is slightly below this threshold, possibly due to the different
behaviour of the elastic constants under pressure. It should be
noticed that the Orowan value ðG=2πÞ is only a first-order estimate

Fig. 4. (a) Specimen is indented by a rigid spherical indenter. (b) Typical load–displacement curve showing the loading (indenter penetration) stage and the unloading
(indenter removal) stage. (c and d) Geometrically necessary dislocations created during the process. Dislocation structure is assumed to be circular dislocation loops. Figure
inspired by Refs. [60–62].

Fig. 5. Comparison of load – hold – unload indentation curve for the three
potentials employed together with a Hertzian solution for an indenter diameter
of 20 nm. Experimental elastic constants were used for the Hertzian solution.
Arrows indicate the end of the elastic regime, followed by the elasto-plastic
transition. Once the maximum prescribed depth is reached, the indenter was held
in position, which translates into a vertical line as the complex stress field gets
relaxed and the load measured at the indenter decreases. After the holding stage,
the unloading was performed by removing the indenter at a constant rate, until full
unload is reached (zero force at the indenter).

Table 2
Hardness measurements (GPa) on Ta (100), for all indenter diameters D (nm), for
the different potentials studied.

D (nm) Li-EAM (GPa) Dai-EFS (GPa) Ravelo-EAM (GPa)

8 21 19.9 15.7
12 17.7 17.7 14.9
16 17.6 16.3 14.3
20 16.6 16.6 14.0
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of the theoretical strength, and that more exact calculations
predict values that are significantly different. A threshold above
the ideal value for homogeneous nucleation is not unexpected,
because of a possible pressure hardening effect [66]. The occur-
rence of pressure hardening in Ta has been reported by Park et al.
[68] and is attributed to the pressure dependence of the shear
modulus, which increases with pressure, hence increasing the
threshold. The pressure hardening effect during nanoindentation
has also been verified before [17]. Schuh et al. [69] demonstrated
that the first pop-in event requires a large critical stress. Both Dai-
EFS and Ravelo-EAM display similar pressure hardening but quite
different thresholds, pointing to the complexity of dislocation
nucleation. For instance, Ogata [66] pointed out that nucleation
might be driven by stress gradients, not stress maxima. Recently,
Kang et al. [70] reported a complex behavior of the shear stress
needed to move a dislocation, depending on the exact angle of the
applied shear, with mobility showing a faceted behavior.

It is customary in experiments to indicate pop-in events in
terms of the dimensionless ratio ap=D, where D is the tip diameter.
For f001g Ta surface, experiments and previous simulations
indicate that ap=D� 0:1970:01 at 293 K [24]. Our results show
ap=D

Li ¼ 0:2170:02, ap=D
EFS ¼ 0:2170:01, ap=D

Rav ¼ 0:1770:01
for the 20 nm diameter tip indenter.

Hardness measurements for our simulations, using Eqs. (15)
and (16) are presented in Table 2 for (100) single crystals and in
Table 3 for (110) and (111) single crystals. There is a decrease in
hardness with the potential and diameter of the indenter D, with
HLi�EAM being the highest and HRavelo�EAM the lowest. The effect of
the indenter diameter is similar to the indentation size effect
reported by Swadener [71], that is hardness decreases as indenter
diameter increases, without the influence on the penetration
depth or contact radius. The hardness in the ð111Þ single crystal
is the lowest, and this is probably due to the greater availability of
shear directions.

4.3. Indentation rate effects on elastic deformation and the onset of
plasticity

Additional simulations were performed at a penetration velo-
city of 3.4 m/s (�1/1000 C0) to establish the effect of strain rate on
the indentation of (001) Ta using the 20 nm diameter tip. The
results are plotted in Fig. 6. As expected, the critical load to induce
plasticity depends on the penetration velocity. The critical load is
lowered by 9% for Dai-EFS, and 11% for Ravelo-EAM for a ten fold
decrease in penetration velocity (and associated strain rate). One
can extract an exponent for the strain rate sensitivity using the
stress at which plastic deformation is first noticeable (pop-in
stress) divided by the ratio of strain rates, which we assume to
be equal to the ratio of velocities:

m¼ log σ1=σ2

log _ϵ1= _ϵ1
¼ log σ1=σ2

1
ð18Þ

The corresponding values are, for the two potentials: Dai-EFS:
m¼0.037; Ravelo-EAM: m¼0.055. These values are in line with
the known strain rate sensitivity of Ta in the thermally activated
regime since values reported in the literature are in this range:
Rajendran et al. [72]: m�0.04–0.1; Hoge and Mukherjee [73]:
m¼0.075. However, the strain-rates are on the order of 108–
109 s�1 and this regime is definitely not in the realm of thermal
activation.

In every case, the onset of plasticity occurs due to homoge-
neous nucleation of planar defects, as recently reported by Alcalá
et al. [24], and in agreement with the onset of plasticity from a
void, which has a similar geometry, reported earlier by Tang et al.
[50,74].

4.4. Tip diameter effect on elastic curve and onset of plasticity

For all diameters studied here (8–20 nm), the onset of plasticity
occurs by the nucleation of planar defects, as discussed before.
A few ps after the onset of plasticity, twins appear for every
potential and every tip diameter used in our MD simulations.
Then, dislocation shear loops nucleate, with cross-slipping of
screw segments as the indentation proceeds, leading to prismatic
loop emission for the Dai-EFS and Ravelo-EAM potentials. The Li-
EAM potential does not reveal prismatic loop emission for an
indentation speed of 34 m/s, at any tip diameter. It does emit
prismatic loops for 3.4 m/s and 20 nm diameter tip, which is
evidence for a strong velocity dependence. Hagelaar et al. [25]
showed prismatic loop emission for a 10 nm diameter indenter

Table 3
Hardness measurements (GPa) on Ta (110) and (111).

D (nm) Ta (110)
Dai-EFS (GPa)

Ta (110)
Ravelo-EAM (GPa)

Ta (111)
Dai-EFS (GPa)

Ta (111)
Ravelo-EAM (GPa)

8 19.5 19.2 14.8 14.7
12 19.3 18.8 14.2 14.1
16 18.2 17.6 13.9 13.9

Fig. 6. Indenter velocity dependence of the loading curves for the three potentials and a 20 nm diameter tip. The Hertz approximation was calculated with the elastic
constants for each potential. Arrows indicate the onset of plasticity. As the penetration rate decreases, the first pop-in event becomes more noticeable, with a marked
reduction in load at the onset of plasticity. (a) Dai-EFS and (b) Ravelo-EAM.
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from a W (111) surface, but their mechanism seems to be direct
loop punching and not the dislocation reactions observed in
our case.

Figs. 7 and 8 reveal that both the point at which the onset of
plasticity occurs and the slope of the elastic-plastic stage increase
with increasing diameter.

4.5. Plasticity mechanisms during loading

Past the initial defect-nucleation stage, plasticity evolves as a
balance of two well-known and distinctive mechanisms: twinning
and dislocation activity. This is shown below for the indentation
along ½100�.

The Li-EAM potential produces profuse twinning starting in the
early stages of plasticity. As the indenter continues penetrating,
the interaction of twins produces a nest-like arrangement of twins,
as it can be seen in Fig. 9. This structure acts as a stable set of
planar defects from which dislocation loops evolve. The twin
volume fraction is 0.8% at the end of the loading stage. This
structure is penetration-rate dependent, since it appears only for
an indentation speed of 34 m/s, but not for 3.4 m/s. It is this
unexpected behavior together with the results shown in Figs. 1a, 2
and 3a, that lead us to discard the use of this potential for the rest
of the study.

The Dai-EFS potential also produces stable twins (Fig. 10a), with
a volume fraction of 0.3%, but with typical twin lamellae being
formed near the surface. The Ravelo-EAM potential also produces
twinning (Fig. 10c), achieving a volume fraction at the end of the
loading stage of 0.25%, matching the Dai-EFS values closely, except
at the end of unloading, where all twins disappear.

Large twin volume fractions in Ta deformed at high strain rates
were previously reported using both the EFS [75] and Ravelo
potentials [32]. It must be pointed out that twinning often appears
under high strain rate conditions, and the twinning observed in
our simulations might not appear for indentation velocities
approaching experimental values, which are outside the reach of
current large scale atomistic simulations. However, experiments
on nanoindentation of nanocrystalline Ta (grain sizes 10–30 nm)
[76], where twinning might be easier due to the nanoscale grain
sizes, show that deformation proceeds by means of twinning. To
the best of our knowledge, there are no nanoindentation experi-
ments for Ta single crystals showing twinning. The small twin
fractions we observe in our simulations would be difficult to
detect experimentally, even with High Resolution Transmission
Electron Microscopy (HRTEM).

Dislocation activity during indentation also differs for each
potential, as shown in Fig. 10. There are several aspects, some of
them potential dependent, that are revealed by the computations.
A process of twin annihilation [24] occurs for all potentials, leading
to the generation of dislocation loops.

For the Dai-EFS and Ravelo-EAM potentials, dislocation loops
evolve in f110g, f112g and f123g planes with 〈111〉 directions,
consistent with the three bcc slip systems. The screw segments of
the dislocation loops cross-slip, leading to the generation of
prismatic loops, which further move along 〈111〉 directions. The
resulting structures at the end of the loading stage are presented
in Fig. 10. Prismatic loop formation is more profuse for the Ravelo-
EAM potential (Fig. 10). Dislocation structures for the Dai-EFS and
Ravelo-EAM potentials are qualitatively similar at 34 m/s and
3.4 m/s.

Dislocation generation and multiplication can be quantified by
computing the total dislocation length (Dislocation Extraction
Algorithm – DXA) which can then be compared to the geome-
trically necessary dislocations length and the statistically stored
dislocations length. Geometrically necessary dislocations are those
related to strain gradients, such as the ones commonly produced
by nanoindentation, while statistically stored dislocations account
for species which do not produce strain gradients, such as
prismatic loops and dislocation dipoles [77,78].

Following Hua and Hartmaier [79], the local dislocation density
ρdðrÞ was computed with a code programmed ad hoc by the
authors. The tool defines hemispherical shells and by using the
DXA output, classifies the dislocation contribution to each shell

Fig. 7. Ta (100): on indenter size dependence of the loading curves for the three
potentials. 8, 12, 16 and 20 nm denote the diameter of the spherical tip used for the
simulation. Note the jagged behaviour for Li and Ravelo EAMs in the elastic loading
portion. After the onset of plasticity, indicated with arrows, no significant
difference is found in the slope of the elasto-plastic regime amongst different
indenter sizes for each potential. (a) Li-EAM, (b) Dai-EFS and (c) Ravelo-EAM.
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and finally computes the dislocation density associated to each
shell. Shell thickness was taken as 1 nm. The dislocation density
was computed as the total length divided by the volume of the
shell. The results are presented in Fig. 11 showing the computed
local dislocation density as a function of the distance to the center
of the spherical indenter. There is no significant effect of orienta-
tion on the density, which decays from a maximum around
1017 m�2 to less than 1016 m�2 over a distance approximately
equal to the indenter radius. This agrees with earlier works [35,36]
and experimental measurements showing that the plastic defor-
mation is around 2–3 times the radius ap. The curves show
distinctive features such as a maximum at a distance to the
indented surface and decay both towards the surface and to the
substrate interior. As expected after previous experimental results

by Chiu and Ngan [80], the dislocation density, ρd, is a function of
the depth within the sample, that is the local dislocation density
varies with depth. A plausible explanation can be derived from the
known fact that defect nucleation occurs where shear stresses are
maximum; for the stress field exerted by a spherical indenter this
happens at a typical distance of 0.48 ap in an isotropic solid [81].
Naturally, one would expect also a decay towards the surface, as
seen in the density profiles in Fig. 12. It should be noted that it is
difficult to measure the dislocation density close to a free surface
using existing simulation analysis techniques. The comparison of
the Dai-EFS and Ravelo-EAM potentials predictions of dislocation
densities, shown in Fig. 12, reveals a similar maximum value of
1017 m�2, and a decay for r4rindenter . A dislocation density of
� 1016 m�2 would put the dislocation separation at �10 nm for a
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Fig. 8. Ta (110) and (111): indenter size dependence of the loading curves for 8, 12 and 16 nm diameter tip as described by (a and b) Dai-EFS and (c and d) Ravelo-EAM
potentials. Markers indicate the onset of plasticity.

Fig. 9. (a) Twinning for the Li-EAM potential at the end of the loading stage, and (b) at the end of the recovery stage, with twin boundaries shown in green, point defects in
red, and other defects in blue, as filtered by the Dislocation Extraction Algorithm. (c) Close-up of the residual defective structures for Li-EAM, showing a nest-like structure.
Colors indicate distance from surface, with blue being deeper into the sample. Loading direction: ½100�. (a) Li-EAM, end load twinning, (b) Li-EAM, residual twinning and
(c) close up – nest-like structure. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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�10 nm indenter diameter, that is the mean spacing between
dislocations would be of the same order as the indenter itself. Still,
in the plastic zone created, a sufficiently large number of disloca-
tions have been created (see Figs. 9 and 10) to give our distribu-
tions a meaningful sense.

4.6. Residual microstructures

Often left unexplored in previous MD studies of nanoindentation,
we here study micro-structures after unloading. Bahr et al. [82]
pointed out the possibility that a fraction of dislocations retreat to
the surface during unloading. This is indeed verified in our simula-
tions (Fig. 10) and was also shown recently by Smith and co-workers
[43]. There is a significant recovery of defective structures for the
Dai-EFS and Ravelo-EAM potentials. After the loading stage, the
Ravelo-EAM potential has produced a significant amount of

prismatic loops on 〈111〉 directions. During the unloading stage
several prismatic loops retreat towards the surface and interact with
other dislocation loops, leading to their annihilation. This process
also leads to the production of single and di-vacancies (Fig. 10). The
same mechanism is observed for the Dai-EFS potential. Quantifica-
tion of dislocation densities by means of the Dislocation Extraction
Algorithm reveals a two fold decrease in dislocation density due to
unloading. The residual dislocation densities in our simulations are
similar to values measured experimentally for Ta samples deformed
at high pressures [83].

For the Li-EAM potential a nest-like structure made of twins and
other non-dislocation defects develops during the loading stage and,
due to the stability of these structures, the nest survives to the
unloading stage, as seen in Fig. 9. The intersecting structures made of
twins are relatively stable after unloading, resulting in only a modest
decrease of the twin volume fraction, from 0.8% to 0.6% (Fig. 9a and
b), where twin volume fractions are calculated for the whole box
volume. Dislocation loops remain attached to this nest-like structure.

For the Dai-EFS potential, a significant fraction of twins also
survive after unloading: 0.2% versus 0.3% at the end of the loading
stage. (Fig. 10b). Surprisingly, for the Ravelo-EAM potential, twins
do not survive after unloading (Fig. 10d). Ongoing experiments
using HRTEM on nanoindented single crystal Ta [84] will hopefully
clarify which scenario is more relevant for realistic conditions.

4.7. Study of the residual pileups

During the analysis of nanoindentation experiments, pile-ups
at the indenter site are often explored by Atomic Force Microscopy
(AFM) [65]. After release, we extracted the pile-up pattern from
our simulations for the 16 nm diameter tip, shown in Fig. 13.

Biener et al. [65] observed a 4-fold symmetry and anisotropy of
the pile-up pattern when studying f100g Ta under a spherical
indenter. This 4-fold symmetry is expected for indentation of a
f100g surface in a cubic crystal, because of the 4-fold symmetry of

Fig. 10. Residual twinning for Dai-EFS and Ravelo-EAM potentials, with twin boundaries shown in green, point defects in red, and other defects in blue. Dislocation recovery
is also verified during unloading. Loading direction: ½100�. (a) Dai-EFS, end load twinning, (b) Dai-EFS, residual twinning, (c) Ravelo-EAM, end load twinning and (d) Ravelo-
EAM, residual twinning. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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〈111〉 slip in this case. In a recent study of the plastic anisotropy of
tungsten single cristals under spherical micro-indentation, Yao
and co-workers [85] experimentally found the same pile-up
anisotropy shown in Fig. 13. For the f110g surface, the 〈111〉 slip
produces a 2-fold symmetry of the pile-up. Finally, for the f111g
surface, the 〈111〉 slip produces a 3-fold symmetry of the pile-up

due to dislocation activity in ð112Þ, ð121Þ and ð211Þ planes.
In conclusion, Fig. 13 is in good agreement with experimental
AFM images of Ta nanoindentation [65] and of W nanoindentation
[85], in spite of the fact that length scales are much smaller here.

The height of the pile-ups is determined by net material
transport towards the surface by loop emission and glide on
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〈111〉 directions. Crystal plasticity models implemented in Finite
Element Method (FEM) calculations are also able to predict pile-
ups with the same geometry, but perfectly symmetric, i.e. equiva-
lent in all planes [86,87]. Here thermal and stress fluctuations lead
to slightly different hillocks on the surface. No significant differ-
ences are observed between the two potentials shown in Fig. 13,
except for the fact that Dai-EFS potential seems to produce a less-
spread out and steeper pile-up when compared to Ravelo-EAM
potential.

4.8. Identification of an intrinsic length-scale from hardness
simulations

The indentation size effect is the term usually used to refer to
the increase in hardness with decreasing depth of penetration
observed in many microindentation and nanoindentation studies
[71]. This effect has been often treated using the concept of
geometrically necessary dislocations associated with strain gradi-
ents. In order to identify the intrinsic material length parameter
associated to GNDs, we will now follow the treatment by Al-Rub
and Voyiadjis [61].

Considering the scheme presented in Fig. 4, we assume that the
plastic deformation is accommodated by circular loops of geome-
trically necessary dislocations with Burgers vector normal to the
plane of the sample surface. The determination of GNDs under a
spherical indenter has been thoroughly treated [88,89,60,71]. The
present treatment follows the approach of Al-Rub and Voyiadjis [61].

As the indenter is forced into the substrate of a single crystal,
GNDs are required to accommodate the permanent shape change
at the surface. It is common practice to assume that after spherical
indentation, the profile of the residual pit in the unloaded
condition can be described by a paraboloid defined as [90]

wr ¼ �hpþr2=Dp for 0rrrap ð19Þ
where hp, ap and Dp are the residual values of the profile depth,
radius and diameter respectively, see Fig. 4. Here we propose a
cubic fit of the indentation profile described by

wr ¼ �hpþr3=D2
p for 0rrrap ð20Þ

The cross-section of the pit is also of interest to both experi-
mentalists and analysts in the nanoindentation field since material
intrinsic length scales of strain gradient plasticity theory can be
derived from it [61].

Fig. 14 presents the indentation residual profiles for the three
crystallographic orientations under the EFS potential, together
with the predictions of Eqs. (19) and (20), showing better agree-
ment with the latter. This comparison becomes relevant for the
analysis of plasticity in nanoindentation processes since, as shown
by Al-Rub and Voyiadjis [61]; material intrinsic scales can be
derived from the slope of Eq. (20). By taking the slope of Eq. (20)
and comparing it with Fig. 4, it can be shown that

dw
dr

¼ 3r2=D2
p ¼

bG
LG

or LG ¼ bGD
2
p

3r2

�����
����� ð21Þ

where LG is the mean spacing between slip steps corresponding to
the GND loops generated on the surface of the sample. The
expression suggests that the spacing of dislocation loops increases
as the observer moves away from the indentation axis (i.e.
LGp1=r2). This finding agrees with experimental observations
[80]. Recently Faghihi and Voyiadjis [62] proposed two physically
based models to capture the temperature and rate indentation size
effects for bcc metals by considering different expressions of the
geometrically necessary dislocations density. In that work, the
authors present a physics-based equation for the material length
scale of single-crystalline materials (see [62, Eq. 13]) which, for

Niobium, renders a value of 2.94 nm, that is around 10 times the
magnitude of the burgers vector. In our study, the use of Eq. (21)
renders a value of �2 times the magnitude of the burgers vector.
This difference is no surprise since Voyiadjis and Al-Rub [91]
demonstrated that the length scale decreases with the increase of
strain rate, which is a non-negligible condition of our MD
simulations.

Continuing with our treatment, and defining λ as the total
length of the injected loops, then

dλ¼ 2πr
dr
LG

¼ 6π
r3

bGD
2
p

dr ð22Þ

Integrating

λ¼
Z ap

0
6π

r3

bGD
2
p

dr¼ 3
2
π

a4p
bGD

2
p

ð23Þ

The dislocation density during indentation is also governed by a
large hemispherical volume V defined by the contact radius ap
around the indentation profile and a plasticity zone factor f, taken
here as equal to 1.9 after Durst et al. [35]. This is consistent with
the results of dislocation densities presented in Figs. 11 and 12. In
this model, the injected loops remain within V; hence, assuming a
half-sphere:

V ¼ 2
3
πðfapÞ3 ð24Þ

so that the density of GNDs becomes

ρG ¼ λ
V
¼ f �3 ap

bGD
2
p

ð25Þ

Should Eq. (19) be used, instead of Eq. (20), ρG will not be a
function of the indentation depth, hence of the contact radius. This
was demonstrated by Al-Rub and Voyiadjis [61], in agreement
with Swadener et al. [71]. Therefore, Eq. (20) is worth an analysis.
First of all, the results are a direct consequence of the profile of
indentation pits which are LGpr3 instead of r2, a change in profile
evolution that may have been caused by the indentation rate that
is much larger than in quasi-static indentation tests, or by the
shallow penetration depth.

As shown by Gerberich et al. [92] in their interpretation of
indentation size effects, the ratio of the contact area to the hemi-
spherical volume of deforming material can be nearly constant for

Fig. 14. Typical pit profiles for the current study compared to a quadratic
approximation [90] and a cubic approximation by Eq. (25) for a 16 nm diameter
indenter. Note the cross-over of Eq. (25) and the quadratic approximation which
suggests that the former might only be applicable to shallow depths and or high
indentation rates as the one used in the current study.
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shallow depths. Following the same line of thinking, if the ratio
q¼ ap=Dp is nearly constant, this is indeed verified in our simula-
tions, Eq. (20) turns into

ρG ¼ f �3q
1

bGDp
ð26Þ

This result is in agreement with Swadener [71] since ρG is indepen-
dent of the indentation depth for spherical indenters.

Calculation of the geometrically necessary dislocation density
by means of Eq. (25) using the data available in Fig. 14 with a
Burgers vector of 0.286 nm for Ta and an f factor of 1.9 after Durst
et al. [35] renders a reasonable value of ρG � 61016 m�2, where q
was taken as 1=2 for the sake of simplicity. We should note that
the choice of f at this nano-scale is not beyond questioning but a
detailed study of the appropriate determination at this scale
would require an extensive research effort in itself [93]. The
higher dislocation densities observed in the MD simulations
suggest that there is a significant number of statistically stored
dislocations (SSD). The relative proportions of GND and SSD seem
to vary with the radial distance.

5. Conclusions

We used molecular dynamics (MD) simulations to study
plasticity during nanoindentation of a Ta ð100Þ, ð110Þ and ð111Þ
single crystals and investigated the influence of the interatomic
potential on the onset of plasticity and on the resulting micro-
structures, differentiating dislocation activity and twinning.

Our major findings are the following:

� Three interatomic potentials where thoroughly evaluated. The
results presented here pose serious concerns on the applic-
ability of the Li-EAM potential in high-pressure, high strain
gradient applications such as nanoindentation simulations. The
Dai-EFS potential proved to have the least sensitivity to varia-
tions of indenter tip diameter and indenting velocity when
compared to a Hertz-like behavior. Dislocation activity proves
to be the main plasticity mechanism, with twinning as a
secondary mechanism.

� The geometrically necessary dislocation density obtained ana-
lytically, ρG � 6� 1016 m�2, compares favorably with DXA
measurements from the MD simulations and suggests that
the density of statistically stored dislocations is commensurate
with that of GNDs

� A new intrinsic length-scale law is proposed. The model is
derived from the indentation pit profile and making use of the
geometrically necessary dislocations concept. An intrinsic
length scale is obtained, feeding a dislocation length and
dislocation density computation that produce results consis-
tent with calculations performed using MD data, suggesting
that the model might suit studies of shallow depth or high
penetration rate nanoindentation.

The results presented here can help in the development of
dislocation-based continuum theories [94], which become extre-
mely important when considering surface and thin-substrate
effects in nanoindentation studies. This study shows how different
potentials can produce very different results. But despite all their
possible limitations, molecular dynamics simulations can still offer
important insights into plastic activity during indentation [95–97],
guiding the interpretation of experiments with ever increasing
resolution.
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